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Abstract

The main objective of this dissertation is to focus on a numerical study of chemi-

cal reaction and radiation effects on the steady state boundary layer flow of MHD

Williamson nanofluid in a porous medium past the horizontaly stretching sheet

with the existence of nanoparticles. Moreover, the impact of Cattaneo-Christov

heat flux model is also discussed. A mathematical model which resembles the

physical flow problem has been developed. Similarity transformations are used

to convert partial differential equations (PDEs) into a system of nonlinear ordi-

nary differential equations (ODEs). The resulting system of ordinary differential

equations (ODEs) is solved numerically by using shooting method and obtained

numerical results are compared with Matlab bvp4c built in function, which shows

an excellent agreement. Effects of various physical parameters on the dimen-

sionless velocity, temprature, and concntration profiles are shown in the form of

graphs. Numerical values of skin friction coefficient, Nusselt number (heat transfer

rate), and Sherwood number (mass transfer rate) are also computed. The effects

of different physical parameters on the flow and heat transfer characteristics are

discussed in detail.



Contents

Author’s Declaration iv

Plagiarism Undertaking v

Acknowledgements vi

Abstract vii

List of Figures x

List of Tables xi

Abbreviations xii

Symbols xiii

1 Introduction 1

1.1 Thesis contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Outline of the dissertation . . . . . . . . . . . . . . . . . . . . . . . 5

2 Basic definitions and governing equations 7

2.1 Some basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Classification of fluids . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Types of flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Heat transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Dimensionless numbers . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Boundary layer flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 Similarity transformation . . . . . . . . . . . . . . . . . . . . . . . . 19

2.8 Basic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.8.1 Continuity equation . . . . . . . . . . . . . . . . . . . . . . . 20

2.8.2 Momentum equation . . . . . . . . . . . . . . . . . . . . . . 20

2.8.3 Energy equation . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.9 Solution methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 22

viii



ix

3 MHD melting heat transfer of Williamson nanofluid with the ef-
fect of chemical reaction 24

3.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Numerical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Code validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Effect of Cattaneo-Christov heat flux on MHD Williamson nanofluid
flow in a porous media 43

4.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Numerical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Conclusion and outlook 56

5.1 Future recommendations . . . . . . . . . . . . . . . . . . . . . . . . 57

Bibliography 58



List of Figures

3.1 Geometry of the physical model. . . . . . . . . . . . . . . . . . . . . 25

3.2 Impact of melting parameter on the velocity profile. . . . . . . . . . 36

3.3 Influence of melting parameter on the temperature field. . . . . . . 37

3.4 Effect of radiation parameter on the dimensionless temperature. . . 37

3.5 Effect of radiation parameter on the dimensionless concentration. . 37

3.6 Imapct of Lewis number on the dimensionless temperature. . . . . . 38

3.7 Imapct of Lewis number on the dimensionless concentration. . . . . 38

3.8 Impact of magnetic parameter on the velocity field. . . . . . . . . . 38

3.9 influence of magnetic parameter on the temperature profile. . . . . 39

3.10 Effect of thermophoresis parameter on the dimensionless temperature. 39

3.11 Effect of thermophoresis parameter on the dimensionless concentra-
tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.12 Effect of permeability parameter on the dimensionless velocity. . . . 40

3.13 Effect of permeability parameter on the dimensionless temperature. 40

3.14 Effect of Williamson parameter on the dimensionless velocity. . . . 40

3.15 Effect of Williamson parameter on the dimensionless temperature. . 41

3.16 Influence of chemical reaction parameter on the dimensionless con-
centration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.17 Influence of Pr on dimensionless temperature. . . . . . . . . . . . . 41

3.18 Influence of Brownian motion on the dimensionless temperature. . . 42

3.19 Impact of Brownian motion on the dimensionless concentration. . . 42

4.1 Impact of melting parameter on the dimensionless velocity. . . . . . 52

4.2 Impact of melting parameter on the dimensionless temperature. . . 52

4.3 Effect of radiation parameter on the dimensionless temperature. . . 53

4.4 Effect of radiation parameter on the dimensionless concentration. . 53

4.5 Effect of Prandtl number on the dimensionless temperature. . . . . 53

4.6 Effect of Brownian motion parameter on θ(ξ). . . . . . . . . . . . . 54

4.7 Behavior of Brownian motion parameter on the dimensionless con-
centration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.8 Effect of kp on the dimensionless velocity. . . . . . . . . . . . . . . . 54

4.9 Representation of temperature profile for various values of kp. . . . 55

x



List of Tables

3.1 Numerical results of Nusselt number for various values of Prandtl
number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Numerical results of -
√
ReCf for numerous values of M and λ. . . . 32

3.3 Numerical results of Sherwood number (−φ′(0)), and Nusselt num-
ber (−θ′(0)) for different parameters. . . . . . . . . . . . . . . . . . 33

4.1 Numerical results of Sherwood number (−φ′(0)), and Nusselt num-
ber (−θ′(0)) for various parameters. . . . . . . . . . . . . . . . . . . 50

xi



Abbreviations

MHD Magnetohydrodynamics

PDEs partial differential equations

ODEs ordinary differential equations

RK Runge-Kutta

IVPs initial value problems

BVPs boundary value problems

xii



Symbols

(u, v) velocity components

(x, y) cartesian coordinates

ρ nanofluid density

ν kinematic viscosity

ψ stream function

θ nondimensional temperature

φ nondimensional concentration

DB coefficient of Brownian diffusion

DT coefficient of thermophoresis diffusion

k′ porous medium permeability

B0 induced magnetic field

Tw nanofluid temperature near wall

T∞ free stream temperature of nanofluid

λ non-Newtonian Williamson parameter

kp permeability parameter

Pr Prandtl number

Nu Nusselt number

R radiation parameter

Nb Brownian motion parameter

Nt thermophoresis parameter

Le Lewis number

γ chemical reaction parameter

M dimensionless melting parameter

xiii



xiv

k∗ mean absorption coefficient

ξ dimensionless similarity variable

Cf skin friction coefficient

Sh Sherwood number

qw surface heat flux

qm surface mass flux

Re Reynolds number

κ thermal conductivity

(ρc)f heat capacity of the fluid

(ρc)p heat capacity of the nanoparticle



Chapter 1

Introduction

A substance in the gas or liquid phase is referred to as the fluid. Flow of fluid

has all kinds of aspects, steady and unsteady, compressible and incompressible,

viscous and inviscid, rotational and irrotational, uniform and non-uniform etc,

Meir [1]. The study of fluid flow on a stretching sheet is one of the important

problems in the current era as it occurs in different processes of engineering for

example, extrusion, wire drawing, food manufacturing, metal spinning, manufac-

turing of rubber sheets and cooling of huge metallic plates such as an electrolyte,

etc. Sakiadis [2] was the first who introduced the problem of boundary layer ap-

proximations over stretching surface. The flow caused by stretching sheet was

investigated by Crane [3]. Recently, many researchers such as Shehzad et al. [4],

Zheng et al. [5], and Gireesha et al. [6] are interested to investigate the fluid flow

phenomenon passed through stretching surfaces because of significant applications

as mentioned above.

Heat transfer, is the thermal energy movement from one system to another system

at various temperatures. There are three mechanisms of transfer of heat: convec-

tion (through fluid movement), radiation (through electromagnetic waves), or con-

duction (through direct contact). It is a well known fact that the phenomenon

of heat transfer occurs between two bodies (or within the same body) due to the

difference of temperature. The research of flow and heat transfer generated by

means of stretching medium has plenty of significance in numerous industrialized

1
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developments, e.g, in the process of rubber and plastic sheets manufacturing, up-

grading the solid materials like crystal, turning fibers etc. The most widely used

coolant liquid among them is water. In the above cases, the heat transfer and flow

investigation are of significant importance because the final product quality be

determined to bulk level on the basis of coefficient of skin friction and heat trans-

fer surface rate. In various industrial processes of engineering, the characteristics

of heat transfer have huge demands in microelectronics, transportation and fuel

cells etc. Numerous investigators have analyzed different traits of stretching flow

problem. Elbashbeshy [7] studied about transfer heat and flow of viscous fluid

by assuming the stretched sheet. After that Sanjayanand and Khan [8] extended

their work about mass and heat transfer of viscoelastic fluid by assuming the

elastic deformation and viscous dissipation. The numerical results for mass and

transfer of heat of viscous fluid about stretching sheet were developed by Magyari

and Keller [9].

Nanoparticles are particles between 1 and 100 nanometer in size. Nanofluids are

obtained through dispersion of nanoparticles with base fluid usually (water). The

purpose of nanofluids is to approach the maximum thermal properties with small-

est possible concentration. The development of nanofluids helped to achieve su-

perior thermal conductivity and enhanced heat transfer characteristics. Nanoflu-

ids are homogenous mixture of nanoparticles and the base fluid. Some common

nanoparticles include carbons in different forms like diamond and grphite car-

bon nanotubes, Aluminium Oxide (Al2O3), Copper Oxide (CuO), Aluminium Ni-

tride (AlN), Silcon Nitride (SiN), etc. All nonmetallic and metallic particles

change the transfer properties and heat conduction characteristics of the base flu-

ids for example, liquids of organic, refrigerants, ethylene, etc. In fact the enhanced

thermal conductivity is based on the nanoparticles while the effectiveness of heat

transfer enhancement also depends upon the dispersed particles, material type, etc.

The use of additives is another way to enhance the heat transfer capacity of base

fluid. Recent research proved that such techniques can improve the heat transport

characteristics and thermal conductivity of the base fluid and consequently the

efficiency of energy. The research on the enhancement of thermal properties of
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conventional base fluid was introduced by Choi [10] in 1995. Choi et al. [11] indi-

cated the major fact that thermal conductivity of the conventional heat transfer

liquids increased up to approximately two times by adding the small amount of

nanoparticles in the fluid, that is, less than 1 by volume. Khanafer et al. [12]

investigated nanofluids heat transport inside an enclosure for the solid particles

dissipation.

The study of magnetic properties of electrically conducting fluids is known as

Magnetohydrodynamics (MHD). MHD fluid flow was first introduced by Swedish

Physicist, Alfven [13]. In recent years, mass and heat transfer on unsteady MHD

natural convenction rotating flow of fluid about a porous plate with heat transfer

and radiation was studied by Mbeledogu and Ogulu [14]. Kesavaiah et al [15]

investigated the unsteady MHD convective flow over a vertical porous plate. The

effect of convection in MHD flow of Jeffrey fluid of heat transfer about a stretching

sheet is reported by Hayat et al. [16]. Mustafa et al. [17] inspected the MHD

Maxwell fluid flow with convective heat transfer. MHD viscous incompressible

flow has many applications in engineering for example, cooling of reactors, a power

generator, MHD accelerators and design of heat exchangers, as provoked by Hari et

al [18].

Non-Newtonian fluids are those for which the shear stress is not linearly propor-

tional to the deformation rate. In other words, fluids that do not satisfy New-

ton’s law of viscosity are known as non-Newtonian fluids. Blood, paints, ketchup,

shampoo, mud etc, behave like non-Newtonian fluids. Williamson fluid is one of

non-Newtonian fluids. The study of Williamson fluids for the boundary layer flow

is of great interest because of its vast range of applications in different branches

of science, technology and engineering, especially material processing, in nuclear

and chemical industries, bio-engineering and geophysics. Considering, these ap-

plications an extensive range of mathematical models has been developed to sim-

ulate the flow behavior of these non-Newtonian fluids. Williamson [19] discussed

the flow of pseudoplastic materials and presented a model equation to discuss

the pseudoplastic fluids flow and verified the results experimentally. Nadeem et

al. [20] presented the Williamson fluid flow past a stretching surface and found
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that by increasing values of Williamson fluid parameter, the dimensionless velocity

decreases. Heat transfer characteristics on non-Newtonian nanofluid flow over a

stretching sheet was presented by Nadeem and Hussain [21]. Hayat and Hina [22]

studied the impact of mass and heat transfer with flexible walls on Williamson fluid

flow. In current era, Hayat et al. [23] presented a study to analyze the impact of

Ohmic heating in peristaltic flow of non-Newtonian fluid. Initially, Sarpakaya [24]

investigated the non-Newtonian fluid flows in the presence of magnetic field. He

introduced two non-Newtonian models known as power-law model and Bingham

plastic model for the influence of magnetic field. Recently, flows of boundary

layer of Newtonian and non-Newtonian fluids have drawn considerable attention

because of their significant applications in processing of metallurgical, phenom-

ena of chemical engineering transport, molten polymers extrusion, plastic sheets

and wrapping foils fabrication etc. Species, momentum and heat transport play a

major role in such processes [25]. Qasim introduced the impact of mass and heat

transfer on non-Newtonian Jeffrey viscoelastic fluid flow in the existence of heat

source/sink [26]. A mathematical model to investigate the impact of melting heat

transfer non-Newtonian fluid flow in porous medium with Lorentz force was given

by Krishnamurthy et al. [27].

The law of Fourier of heat conduction [28] has been the typical approach for ther-

mal conduction and simulation of heat transfer. The major disadvantage of this

model however, is that it converts the heat conservation formulation to parabolic

energy equation which indicates that the medium under consideration experiences

an initial disturbance. Cattaneo [29] introduced a relaxation time term in heat

conduction law of Fourier’s to overcome this difficulty. Afterwards, Christov [30]

changed the law of Cattaneo by time derivative in Maxwell-Cattaneo’s model

with Oldroyd’s upper-convected derivative to conserve material-invariant formu-

lation. Starzewski [31] used the model of Cattaneo-Christov to analyze thermal

convection in flow of incompressible fluid. Tibullo and Zampoli [32] analyzed the

uniqueness of Cattaneo-Christov heat flux model for flow of incompressible fluid.

Khan et al. [33] numerically investigated the heat flux model of Cattaneo-Christov

in viscoelastic flow due to stretched sheet.
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1.1 Thesis contribution

In this dissertation, a review study of Krishnamurthy et al. [27] has been presented

and then the flow analysis has been extended with variable thermophysical proper-

ties. The governing system of nonlinear PDEs is converted into a system of nonlin-

ear coupled ODEs by utilizing appropriate similarity transformation. Numerical

results are obtained for the set of nonlinear coupled ODEs by using shooting tech-

nique and numerical results are compared through the MATLAB built-in function

bvp4c. The numerical results are analyzed for different parameters through graphs

and tables.

1.2 Outline of the dissertation

This thesis further consists of four chapters.

Chapter 2 presents some basic definitions, terminologies and the governing laws.

We also explain the solution methodology used in this thesis.

Chapter 3 contains a comprehensive review of Krishnamurthy et al. [27]. This

chapter is related to the problem formulation. To obtain the numerical solutions,

the PDEs (nonlinear) have been converted to a system of ODEs (nonlinear) us-

ing similarity transformation. Later on the system of nonlinear coupled ODEs

is solved by using shooting technique. The obtained numerical solutions are also

compared with MATLAB built-in function bvp4c.

Chapter 4 extends the work of Krishnamurthy et al. [27] by considering the

Cattaneo-Christov heat flux model. By utilizing similarity transformation we re-

duce the set of nonlinear PDEs into a set of nonlinear ODEs and then solve

numerically. Graphs and tables describe the behavior of physical parameters.
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Chapter 5 contains thesis summary and gives the outcome achieved from the

entire research and suggests future recommendations.

All the references used in this thesis are presented in Bibliography.



Chapter 2

Basic definitions and governing

equations

In this unit, some basic definitions, terminologies and governing laws will be pre-

sented, which will be helpful in continuing the work for the next units [1].

2.1 Some basic definitions

Definition 2.1.1. (Fluid)

Fluid is a class of matter which deforms continuously under the influence of shear

stress.

Definition 2.1.2. (Fluid mechanics)

Fluid mechanics deals with the study of laws of force and properties of fluid and

the effect of forces on it. It can further be divided into two categories presented

next.

7
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Definition 2.1.3. (Fluid statics)

In fluid statics, we study the behavior of fluids at the state of rest. It is also

referred to as hydrostatics.

Definition 2.1.4. (Fluid dynamics)

The branch that covers the properties of fluid in the state of progression from one

place to another is called fluid dynamics.

Definition 2.1.5. (Viscosity)

The fluid property that measures the resistance to flow. It is denoted by µ.

Definition 2.1.6. (Dynamic Viscosity)

The fluid property that measures the internal resistance of fluid is called dynamic

viscosity. This resistance arises from the attractive forces between the molecules

of the fluid, and it is denoted by µ. Mathematically, it is written as:

µ =
Shear stress

Rate of shear strain
.

In the above expression µ is called the coefficient of viscosity, also known as ab-

solute viscosity having dimension [ML−1T−1]. Unit of viscosity in SI system is

kg/ms or Pascal-second [Pa.s].
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Definition 2.1.7. (Kinematic viscosity)

The kinematic viscosity depicts the ratio between dynamic viscosity µ and the

fluid density ρ. It is represented by ν and mathematically, it can be expressed as:

ν =
µ

ρ
.

The dimension of kinematic viscosity is [L2T−1] and its unit in SI system is m2/s.

2.2 Classification of fluids

Definition 2.2.1. (Ideal fluid)

The fluid which has no viscosity (µ = 0) is known as an Ideal fluid. It is also

called inviscid fluid. There is no existence of shear force because the viscosity is

vanishing in an ideal fluid.

Definition 2.2.2. (Real fluid)

The fluid containing some viscosity effect is said to be a real or viscous fluid having

(µ > 0).

Definition 2.2.3. (Nanofluid)

The nanofluid is defined as the homogenous mixture of the base fluid and nanopar-

ticles. The purpose of the nanofluids is to achieve high thermal properties at the

smallest concentration.
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Definition 2.2.4. (Newtonian fluids)

A fluid in which the viscous stresses arise from its flow and linearly proportional

to the strain, i.e., the rate of change of its deformation, as shear stress and the

rate of deformation are directly proportional to each other, is called a Newtonian

fluid. On the other hand, the fluids which obey the Newtons law of viscosity are

called Newtonian fluids. Mathematically, defined as

τyx = µ
du

dy
,

where τyx is the shear stress, u denotes the x-component of velocity, and µ denotes

dynamic viscosity. The common examples of Newtonian fluids are air, water, al-

chohols, oxygen gas, and silicone etc.

Definition 2.2.5. (Non-Newtonian fluid)

Those fluids for which the shear stress is not linearly proportional to the rate of

deformation. In other words, the fluid which does not satisfy the Newtons law of

viscosity is also said to be non-Newtonian fluid, mathematically written as:

τxy ∝
(
du

dy

)n
, n 6= 1

τxy = µ

(
du

dy

)n
,

where µ denotes the viscosity, n is the index of flow performance. Note that for

n = 1, the above equation reduces to the Newtons law of viscosity. Examples of

non-Newtonian fluids are shampoo, grease, paint, blood and melt polymer etc.
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2.3 Types of flow

Definition 2.3.1. (Flow)

The random motion of a fluid is known as flow. Different types of flow are given

as follows:

Definition 2.3.2. (Laminar flow)

Regular flow of a fluid is known as laminar flow. Rising of smoke is an example of

laminar flow.

Definition 2.3.3. (Turbulent flow)

When fluid undergoes irregular fluctuations or flowing faster, this type of fluid (liq-

uid or gas) is called turbulent flow. Turbulent flow which moves randomly in any

direction and has no definite path and can’t be handled easily. It undergoes

changes both in magnitude and direction.

Definition 2.3.4. (Uniform flow)

The flow in which the velocity and hydrodynamic parameters do not change from

point to point at any given instant, having the same direction as well as magnitude

during the fluid motion, is called the uniform flow. Mathematically, it can be

expressed as
dV

ds
= 0,

where V is the velocity and s is the displacement.
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Definition 2.3.5. ( Non-uniform flow)

In non-uniform flow, the velocity and hydrodynamic parameters change from one

point to another point and the velocity is not same at every point of the fluid at

an instant. Mathematically, it is expressed as

dV

ds
6= 0,

where V is the velocity and s is the displacement in any direction.

Definition 2.3.6. (External flow)

The flow which is not bounded by the solid surface is called external flow. For

example, the flow of water in the river.

Definition 2.3.7. (Internal flow)

The flow is bounded and confined by the solid surface and convenient geometry

for cooling and heating fluids used in the energy is called as internal flow. e.g, flow

in a pipe.

Definition 2.3.8. (Steady flow)

The flow having no change with respect to time is said to be steady flow. Mathe-

matically, it can be written as
∂B

∂t
= 0,

where B is any fluid property.
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Definition 2.3.9. (Unsteady flow)

The flow in which fluid properties change with respect to time is said to be un-

steady flow. Mathematically, it can be written as:

∂B

∂t
6= 0,

here B is any fluid property.

Definition 2.3.10. (Compressible flow)

The density of certain fluids changes with the variation in temperature or pressure,

such a fluid is called compressible fluid. In other words, we can say that density

with respect to certain variables does not remain constant, and mathematically,

written as:

ρ(x, y, z, t) 6= constant.

Definition 2.3.11. (Incompressible flow)

The density of certain fluid does not change with the variation in temperature or

pressure, such a fluid is known as incompressible fluid. In other words, we can say

that density of such fluids remain constant, mathematically written as:

ρ(x, y, z, t) = constant.

2.4 Heat transfer

The energy transfer is called heat transfer. There are three types of heat transfer:
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Definition 2.4.1. (Conduction)

Due to collision of molecules in contact form, heat is transferred from one objects

to another objects is called conduction. Such types of heat transfer occurs in the

solid.

Definition 2.4.2. (Convection)

Convection which is produced by heat transport process by an external source

is known as convection. In other words, heat transfer technique in which fluid

motion is developed by an independent source like a fan and pump etc. is known

as convection.

Definition 2.4.4. (Mixed convection)

It occurs by the combined influence of forced and natural convection to transfer

heat. In other words, when both natural and forced convection processes simulta-

neously contribute to cause the heat transfer, mixed convection occurs.

Definition 2.4.5. (Natural convection)

It is the process, in which heat transfer is caused by the temperature differences.

It effects the density of the fluids and the fluid motion is not developed by an ex-

ternal source. It occurs only in the presence of gravitational force and also known

as free convection.

Definition 2.4.6. (Radiation)

The process in which heat is transmitted directly through the electromagnetic

radiation, is known as radiation and it happens in those situations when bodies

having different temperature are placed such that they have sight line among their

surfaces.
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Definition 2.4.7. (Thermal conductivity)

It is the material property related to its capability to transmit heat. Mathemati-

cally,

κ =
q∇l
S∇T

,

where q represents heat passing through a surface area S and causing a temper-

ature difference ∇T over a distance of ∇l. Here l, S and ∇T all are assumed to

have unit measurement. In SI the unit of thermal conductivity is W
m.κ

and its

dimension is [MLT−3θ−1].

Definition 2.4.8. (Thermal diffusivity)

Thermal diffusivity is a material property for unsteady heat conduction. Mathe-

matically, it can be written as:

α =
κ

ρCp
,

where κ, ρ and Cp denote the thermal conductivity of material, the density and the

specific heat capacity respectively. The unit and dimension of thermal diffusivity

in SI system are m2s−1 and [L2T−1] respectively.

2.5 Dimensionless numbers

Definition 2.5.1. (Prandtl number)

This number has no dimension. It is the ratio between the momentum diffusivity

(ν) and thermal diffusivity (α). It is denoted by Pr. Mathematically, it can be

written as:

Pr =
ν

α
=⇒ µ/ρ

k/ρCp
=⇒ µCp

k
,

where µ denotes the dynamic viscosity, Cp represents the specific heat and κ stands

for the thermal conductivity.
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Definition 2.5.2. (Lewis number)

The Lewis number can be defined as the ratio of the thermal diffusivity to the

molecular diffusivity. It helps us to find the relationship between mass and heat

transfer coefficient. It is denoted by Le. Mathematically,

Le =
λ

ρDmCp
,

where λ represents the convective heat transfer coefficient, Dm represents the

mixture-averaged diffusion coefficient, and Cp the specific heat capacity at con-

stant pressure.

Definition 2.5.3. (Deborah number)

It is defined as the ratio of relaxation time to deformation time, It is denoted by

γ. Mathematically

γ =
λU

2x
.

Definition 2.5.4. (Skin friction coefficient)

Skin friction coefficient represents the value of friction which occurs when fluid

moves across the surface. It is denoted by Cf . Mathematically

Cf =
τw
ρU2

w

,

where τw represents shear stress at the wall, ρ the density and Uw the free stream

velcity.
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Definition 2.5.5. (Reynolds number)

It is the dimensionless number. It is the ratio of the internal force to the viscous

force and describes the degree of laminar or turbulent flow. It is denoted by Re.

It can be written as

Re =
ρVl

µ
=

Vl

ν

where V is the fluid velocity, l the characteritics length, ρ the fluid density, µ the

dynamic viscosity and ν the kinematic viscosity of the fluid.

Definition 2.5.6. (Nusselt number)

It is defined as the ratio between transfer of heat by convection and heat transport

by conduction in the direction normal to the boundary. Mathematically,

Nux =
convective heat transfer coefficient

conductive heat transfer coefficient

Nux =
h∇T/κ∇T

L
=

hL

κ
,

where h∇T represents heat transfer by convection, κ∇T/L stands for heat transfer

by conduction, h denotes the convective heat transfer, L represents characteristics

length, and κ stands for the thermal conductivity of the fluid.

Definition 2.5.7. (Brownian diffusion coefficient)

Brownian diffusion occurs due to the continuous collision between the molecules

and nanoparticles of the fluid. It is denoted by DB and is given by

DB =
KBTCc
3Πµdp

,

where KB, T , Cc, and µ represents Boltzmann constant, temperature, correction

factor and viscosity respectively.
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Definition 2.5.8. (Thermophoresis diffusion coefficient)

Thermophoresis diffusion occurs when particles diffuse due to the effect of tem-

perature gradient. It is denoted by DT and is given by

DT =
−υthT
ν∇T

,

where υth, T , ν, and ∇T denote the thermophoretic velocity, temperature, kine-

matic viscosity and temperature gradient respectively.

Definition 2.5.9. (Sherwood number)

It is the nondimensional quantity which shows the ratio of the mass transport by

convection to the transfer of mass by diffusion. It is denoted by Sh. Mathemati-

cally

Shx =
KL

D
,

where L denotes the characteristic length, D the mass diffusivity, and K denotes

the coefficient of mass transfer.

2.6 Boundary layer flow

The layer of fluid adjacent to the solid surface is known as the boundary layer.

In fluid mechanics, boundary layer flow plays a significant role. The basic idea of

boundary layer was first introduced by Ludwig Prandlt (1874 − 1953). It can be

divided into further categories presented below:

• Hydrodynamic (velocity) boundary layer.

• Thermal boundary layer.

• Concentration boundary layer.
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Definition 2.6.1. (Hydrodynamic boundary layer)

A region of a fluid flow where the transition from zero velocity at the solid surface

to the free stream velocity at some extent far from the solid surface in the direc-

tion normal to the flow takes place in a very thin layer known as hydrodynamic

boundary layer.

Definition 2.6.2. (Thermal boundary layer)

It is an area of the liquid nearest to the solid surface, where the fluid temperature

is directly influenced by the cooling or heating from the surface.

Definition 2.6.3. (Concentration boundary layer)

It is an area of the liquid nearest to the solid surface, where fluid concentration is

directly influenced by the diffusion of mass at the surface.

Definition 2.6.4. (Magnetohydrodynamics)

The study of dynamics of electrically conducting fluids such as plasmas or elec-

trolytes etc is known as magnetohydrodynamics. It is denoted by MHD.

2.7 Similarity transformation

Similarity transformation [34] is a mathematical technique that is applicable in

some cases by which the PDEs of a problem are converted into ODEs. This

technique reduces the number of independent variables of the problem. It can be

stated in a way that it is a rule which combines the two independent variables to

get a new variable.
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2.8 Basic equations

2.8.1 Continuity equation

The law of conservation of mass states that “mass of fluid can neither be created

nor be destroyed”. Continuity equation is the mathematical expression which ex-

presses the mass conservation law. Equation of continuity for compressible fluids,

can be written as
∂ρ

∂t
+∇.(ρV) = 0,

where ρ denotes fluid density. If fluid density is constant, the above equation

is treated as equation of continuity for incompressible fluids. For incompressible

fluids, the above equation becomes

∇.V = 0.

2.8.2 Momentum equation

Each particle of fluid obeys Newton’s second law of motion which is at rest or in

steady state. This law implies that the combination of all applied exterior forces

acting on the particles is equal to the time rate of change of momentum of the

body. This law can be written in the vector notation as

ρ
dV

dt
= divT + ρb.

For Navier-Stokes equation

T = −pI + µA1,

where A1 is the tensor and first time it was produced by Rivlin-Erickson.

A1 = gradV + (gradV)t.
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In the above equations, d
dt

denotes material time derivative or total derivative, ρ

denotes density, V denotes the fluid velocity, Cauchy stress tensor is T , body

forces is b, p denotes the pressure, and dynamic viscosity is µ. In the matrix form

Cauchy stress tensor is written as:

T =


σxx τyx τzx

τxy σyy τzy

τxz τyz σzz

 ,

where σxx, σyy, and σzz are normal stresses, others are the shear stresses. For

two-dimensional flow, we have,

V = [u(x, y, 0), v(x, y, 0), 0] and thus

gradV =


∂u
∂x

∂u
∂y

0

∂v
∂x

∂v
∂y

0

0 0 0

 .

In component form

∂u

∂t
+ u

∂u

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
,

Similarly, we write the Y and Z components respectively, as follows:

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)
,

∂w

∂t
+ u

∂w

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2w

∂x2
+
∂2w

∂y2

)
.

2.8.3 Energy equation

Energy equation is derived from the law of conservation of energy. According to

this law, “energy can neither be created nor be destroyed”. It may change from

one form to another form in an isolated system. The total energy of the system is
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conserved. Mathematically, it can be written as,

ρCp
dθ

dt
= k∇2θ + τ.L,

where ρ denotes the density, Cp represents the specific heat of the fluid at constant

pressure, k denotes the thermal conductivity, while τ and θ denote the stress ten-

sor and temperature, respectively.

2.9 Solution methodology

2.9.1. Shooting method

Consider the 2nd order two point boundary value problem (BVP):

y′′ = f(x, y, y′) (2.1)

subjected to the boundary conditions:

y(0) = 0, y(A) = α,

where α is some known constant. In order to apply the shooting method for the

BVP (2.1), we first convert the Eq. (2.1) into a system of two first order ODEs.

Using the notation, y = y1, y′1 = y2, we have

y′1 = y2, (2.2)

y′2 = f(x, y1, y2), (2.3)

the associated boundary conditions reduced as:

y1(0) = 0, y1(A) = α.
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By considering y2(0)= s, the first order system of Eqs. (2.2) and (2.3) together

with y1(0)= 0, y2(0)= s is an initial value problem (IVP) and can be solved by

using the Runge-Kutta method of order four (RK-4). Then we get both y1 and y2

computed at the decided nodes. If y1(A) is sufficiently close to α, then this y1 is an

approximate solution, if not we have to choose another value of α and the process

is repeated again. Newton method is used to refine the initial guess. This process

is continued until a satisfactory accuracy is achieved. Its main advantage is its

efficiency and fastness. If the solution is extremely sensitive to the assumed initial

condition, then parallel shooting method is applied (see Na [35] for details).



Chapter 3

MHD melting heat transfer of

Williamson nanofluid with the

effect of chemical reaction

In this chapter, we perform the numerical investigation of MHD boundary layer

flow and melting heat transfer of two-dimensional steady state flow of an in-

compressible Williamson nanofluid over a stretching surface in a porous medium.

The modeled boundary layer equations for momentum, energy and concentration

are obtained using the boundary layer approximations. By using an appropriate

transformation, we convert the system of dimensional partial differential equa-

tions (nonlinear) into coupled dimensionless ordinary differential equations. A

numerical technique based on the shooting method is applied for solution of the

system of ODEs. The impact of physical parameters on dimensionless velocity,

concentration, and temperature profiles is discussed through tables and graphs.

In this chapter, review of the Krishnamurthy et al. [27] has been presented.

24
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3.1 Problem formulation

Let us consider the numerical investigation of MHD boundary layer flow of an in-

compressible Williamson nanofluid. The flow is two-dimensional past a stretching

surface with porous medium. Schematic diagram of the system under investigation

is shown in the Figure 3.1. The plate has been stretched with velocity u = ax,

(a > 0) along x-direction. In addition, fluid is flowing in the presence of mag-

netic field. The magnetic field is supposed to be applied along the y-direction.

The temperature at surface is Tw, Uw, Cw represent fluid velocity, nanoparticle

concentration at surface respectively. Moreover, Tm denotes the melting surface

temperature and T∞ denotes the free stream temperature of the nanofluid. The

free stream temperature T∞ is greater than the melting surface temperature Tm.

Here heat generation and viscous dissipation are cosidered to be negligibly small.

Figure 3.1: Geometry of the physical model.

The following system of equations are incorporated for mathematical model [27].

Continuity equation:
∂u

∂x
+
∂v

∂y
= 0, (3.1)
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Momentum equation:

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+
√

2νΓ
∂u

∂y

∂2u

∂y2
− σB

2
0

ρ
u− ν

k′
u, (3.2)

Energy equation:

u
∂T

∂x
+ v

∂T

∂y
= αm

∂2T

∂y2
+ τ

[
DB

∂T

∂y

∂C

∂y
+
DT

T∞

(
∂T

∂y

)2
]
− 1

(ρc)f

∂qr
∂y

, (3.3)

Concentration equation:

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+
DT

T∞

∂2T

∂y2
− k0C. (3.4)

The associated boundary conditions for the modeled problem:

u = Uw(x) = ax, T = Tm, C = Cw, as y = 0,

u = 0, T → T∞, C → C∞, at y →∞,

k

(
∂T

∂y

)
y=0

= ρ[β + cs(Tm − T0)]v(x, 0),


(3.5)

where u and v denote the components of fluid velocity along x and y direction,

respectively, T denotes the temperature of the nanofluid, ρ the nanofluid density,

αm the thermal diffusivity of the nanofluid, ν the kinematic viscosity, DB the

coefficient of Brownian diffusion, DT the coefficient of thermophoresis diffusion,

k′ the porous medium permeability, (ρc)f the heat capacity of the fluid and (ρc)p

denotes the heat capacity of the nanoparticle. In the modeled problem, Tm denotes

the temperature of melting surface, and T∞ represents the temperature in the free-

stream condition. Also, the radiative heat flux is given by:

qr =
−4σ∗

3k∗
∂T 4

∂y
, (3.6)

where σ∗ represents the Stefan- Boltzmann constant and k∗ the coefficient of mean

absorption. By applying Taylor series for temperature of free stream and ignoring
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the terms of higher order, we have

T 4 = 4TT 3
∞ − 3T 3

∞. (3.7)

Substituting Eqs. (3.6) and (3.7) in Eq. (3.3), we get

u
∂T

∂x
+ v

∂T

∂y
= αm

∂2T

∂y2
+ τ

[
DB

∂T

∂y

∂C

∂y
+
DT

T∞

(
∂T

∂y

)2
]

+
16σ∗T 3

∞
3k∗(ρc)f

∂2T

∂y2
. (3.8)

In order to obtain the solution of the problem, first of all the system of Eqs. (3.1),

(3.2), (3.4) and (3.8) together with the boundary conditions (3.5) is converted into

the dimensionless form by using suitable similarity transformation.

The following similarity transformation as defined in [27] has been used.

ξ =

√
a

ν
y, θ(ξ) =

T − Tm
T∞ − Tm

, φ(ξ) =
C − Cw
C∞ − Cw

, ψ = (aν)
1
2xf(ξ). (3.9)

The continuity Eq. (3.1) is identically satisfied for the stream function ψ = ψ(x, y).

The velocity components are given by:

u =
∂ψ

∂y
, v = −∂ψ

∂x
.

Using the similarity transformation from Eq. (3.9) in momentum Eq. (3.2), energy

Eq. (3.3) and concentration Eq. (3.4) along the boundary conditions (3.5) we get

the following system of ODEs:

f ′′′ + ff ′′ − (f ′)2 + λf ′′f ′′′ − (Q+ kp)f
′ = 0, (3.10)

1

Pr

(
1 +

4

3
R

)
θ′′ + fθ′ +Nbφ′θ′ +Nt(θ′)2 = 0, (3.11)

φ′′ + Lefφ′ +

(
Nt

Nb

)
θ′′ − Leγφ = 0. (3.12)
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Here f , θ and φ are function of ξ and prime denotes derivative w.r.t ξ. The

transformed BCs in the modeled problem are:

f ′(0) = 1, P rf(0) +Mθ′(0) = 0, θ(0) = 0, φ(0) = 0,

f ′(ξ)→ 0, θ(ξ)→ 1, φ(ξ)→ 1, as ξ →∞.

 (3.13)

The associated parameters appearing in the modeled problem are:

Pr = ν
αm

= µCp

k
, R= 4σ∗T 3

∞
kk∗

, kp=
ν
k′a

, λ=γx
√

2a3

ν
, γ=k0U(C∞−Cw)

ν
,

Nt= τDT (T∞−Tm)
νT∞

, Q=
σB2

0

ρa
, Le= ν

DB
, Nb= τDB(C∞−Cm)

ν
,

where Pr denotes the Prandtl number, R the radiation parameter, kp the per-

meability parameter, λ the non-Newtonian Williamson parameter, γ the chemical

reaction parameter, Nt the thermophoresis parameter, Q the magnetic parameter,

Nb the Brownian motion parameter and Le is the Lewis number.

The quantities of practical interest in this study are the Nusselt number (Nux),

the skin friction coefficient (Cf ), and the Sherwood number (Shx), respectively.

These are expressed as:

Nux =
xqw

k(T∞ − Tm)
, Cf =

τw
ρU2

w

, and Shx =
xqm

DB(C∞ − Cw)
,

where τw is the shear stress, qm the mass flux from the surface, and qw the heat

flux at the wall surface, given by:

qm = −DB
∂C

∂y
, qw = −k∂T

∂y
, τw = µ

(
∂u

∂y
+

Γ√
2

(
∂u

∂y

)2
)

at y = 0.

Using the dimensionless variables, we get

Nux(Rex)
1
2 = −θ′(0), Cf (Rex)

1
2 = −f ′′(0) +

λ

2
f ′′(0)2 and Shx(Rex)

1
2 = −φ′(0),

where Rex denotes the Reynolds number and is expressed as:

Rex =
xUw(x)

v
.
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3.2 Numerical solution

The analytical solution of the system of Eqs. (3.10)−(3.12) together with boundary

conditions (3.13) can not be found because they are coupled and nonlinear in

nature. These nonlinear coupled ODEs are solved numerically by the shooting

technique. To apply this technique, we first convert the system of ODEs of higher

order into the system of ODEs of first order. Eqs. (3.10) −(3.12) can be rewritten

as,

f ′′′ =
1

1 + λf ′′
(
−ff ′′ + (f ′)2 + (Q+ kp)f

′) ,
θ′′ =

3Pr

3 + 4R

(
−fθ′ −Nbθ′φ′ −Nt(θ′)2

)
,

φ′′ = −Lefφ′ −
(
Nt

Nb

)
θ′′ + Leγφ,

subject to the boundary conditions:

f ′(0) = 1, P rf(0) +Mθ′(0) = 0, θ(0) = 0, φ(0) = 0,

f ′(ξ)→ 0, θ(ξ)→ 1, φ(ξ)→ 1, as ξ →∞.

By using the following notations,

f = y1, f ′ = y2, f ′′ = y3, θ = y4, θ′ = y5, φ = y6, φ′ = y7,
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the system of first order ODEs are:

y′1 = y2,

y′2 = y3,

y′3 =
1

1 + λy3

(
−y1y3 + y22 + (Q+ kp)y2

)
,

y′4 = y5,

y′5 =
3Pr

3 + 4R

(
−y1y5 −Nb(y5y7)−Nt(y5)2

)
,

y′6 = y7,

y′7 = −Ley1y7 + Leγy6 −
Nt

Nb

(
3Pr

3 + 4R

)(
−y1y5 −Nb(y5y7)−Nt(y25)

)
,

subject to the following initial conditions:

y1(0) = η1,

y2(0) = 1,

y3(0) = η2,

y4(0) = 0,

y5(0) = −Prη1
M

,

y6(0) = 0,

y7(0) = η3.

To solve the above system of equations, the unbounded domain [0, ξ∞] is restricted

to a bounded domain [0, ξe], where ξe= 5. This is due to the fact that increasing

the value of ξe beyond 5 gives negligible variation in the numerical results. In the

modeled problem, η1, η2, and η3 are initial guesses which are required to solve the

above first order system of ordinary differential equations with fourth order Runge-

Kutta method. Newton iterative scheme is used to refine those initial guesses. The

iterative process is repeated untill the following criteria is met.

max {|y2(ξ∞)− 0|, |y4(ξ∞)− 1|, |y6(ξ∞)− 1|} < ε,
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where ε = 10−5 is the tolerance for the modeled problem.

3.3 Code validation

In Table 3.1, comparison of Nusselt number for different values of Pr is displayed.

We compare the results obtained by the shooting method with those computed by

the Matlab built-in function bvp4c and found both to be in excellent agreement.

Furthermore, our findings are compared with the published work of Khan and

Pop [36], Gorla and Sidawi [37], and Nadeem and Hussain [38], which show a good

agreement of numerical results.

Present study
Pr Ref. [36] Ref. [37] Ref. [38] bvp4c Shooting
0.07 0.066 0.066 0.066 0.06616 0.06616
0.20 0.169 0.169 0.169 0.16910 0.16910
0.70 0.454 0.454 0.454 0.45411 0.45411
2.0 0.911 0.911 0.911 0.91023 0.91023

Table 3.1: Numerical results of Nusselt number for various values of Prandtl
number.

3.4 Results and discussion

The objective of this section is to analyze the numerical results displayed in the

tabular and graphical form. The numerical influence of different parameters for

example, Prandtl number (Pr), dimensionless melting parameter (M), Brownian

motion parameter (Nb), thermophoresis parameter (Nt), radiation parameter (R),

Lewis number (Le), magnetic parameter (Q), non-Newtonian Williamson param-

eter (λ), permeability parameter (kp), and chemical reaction parameter (γ) on the

velocity profile, temperature profile, and concentration profile are displayed graph-

ically. The values of the skin friction coefficient (Cf ), local Nusselt number (Nux),
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and local Sherwood number (Shx) are presented in tables.

In Table 3.2, numerical analysis of physical parameters such as non-Newtonian

Williamson parameter and dimensionless melting parameter and their influence

on skin friction coefficient (Cf ) is presented. From this table, it is noted that an

increase in the non-Newtonian Williamson parameter and dimensionless melting

parameter, the skin friction coefficient (Cf ) decreases.

Table 3.3 shows the effect of different physical parameters for example, perme-

ability parameter, dimensionless melting parameter, non-Newtonian Williamson

parameter, chemical reaction parameter and their impact on the Nusselt number

and Sherwood number. We compare the results obtained by the shooting method

with Matlab built-in function bvp4c and found both to be in excellent agreement.

From this table, we can see that by increasing the values of permeability parameter,

dimensionless melting parameter, non-Newtonian Williamson parameter, chemi-

cal reaction parameter, Nusselt number and Sherwood number both are decreased.

λ M=0.3 M=0.6 M=1.0 M=1.5 M=2
0.0 1.70978 1.66571 1.63308 1.60870 1.59262
0.05 1.68270 1.63955 1.60763 1.58379 1.56808
0.1 1.65384 1.61173 1.5806 1.55737 1.54206
0.15 1.62277 1.58185 1.55163 1.52910 1.51425
0.2 1.58884 1.54936 1.52022 1.49848 1.48416

Table 3.2: Numerical results of -
√
ReCf for numerous values of M and λ.
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−θ′(0) −φ′(0)
kp M λ γ bvp4c Shooting bvp4c Shooting
0 0.5 0.2 0.01 2.1656 2.1656 0.3345 0.3345
1 1.9578 1.9578 0.2975 0.2975
2 1.7914 1.7914 0.2698 0.2698

0.5 1.7914 1.7914 0.2698 0.2698
1 1.1970 1.1970 0.0920 0.0920
2 0.7392 0.7392 0.0139 0.0139

0.01 1.8511 1.8511 0.2780 0.2780
0.1 1.8256 1.8256 0.2744 0.2744
0.2 1.7914 1.7914 0.2698 0.2698

0.05 1.7661 1.7661 0.2725 0.2725
0.1 1.7364 1.7364 0.2761 0.2761
0.2 1.6832 1.6832 0.2841 0.2841

Table 3.3: Numerical results of Sherwood number (−φ′(0)), and Nusselt num-
ber (−θ′(0)) for different parameters.

The numerical results are presented for the physical interpretation of various val-

ues of relevant parameters in Figures 3.2−3.19.

Impact of melting parameter (M)

The influence of dimensionless melting parameter on velocity profile f ′(ξ) and di-

mensionless temperature profile θ(ξ) is shown in Figure 3.2 and 3.3 respectively.

The graphical demonstration shows that for the increasing values of dimension-

less melting parameter, the velocity profile and thickness of the boundary layer

increases slightly and the temperature distribution decreases. It is found that an

increase in the dimensionless melting parameter increases the melting intensity,

which acts as boundary condition at the stretching surface and has a tendency to

make the boundary layer thicker.

Impact of radiation parameter (R)

The influence of radiation parameter on profile of temperature distribution is dis-

played in Figure 3.4. From the figure it is observed that by increasing the radiation

parameter, temperature profile decreases significantly. It is because of the fact that
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the increasing values of radiation parameter lead to decrease the thickness of the

boundary layer and enhance the heat transfer rate with chemical effect on the

melting surface. Figure 3.5 represents that by increasing the radiation parameter,

enhances the concentration profile φ(ξ).

Impact of Lewis number (Le)

The impact of Le on dimensionless temperature profile θ(ξ) can be seen as in Fig-

ures 3.6. From the figure, it is observed that by increasing values of Lewis number

temperature near the surface of plate decreases and away from the surface of plate

increases and concentration as well as the thickness of concentration increases.

This is due to the fact that Le physically expresses the respective contribution

of rate of thermal diffusion to the rate of species diffusion in the boundary layer

regime. As increasing values of Lewis number reduce the thickness of thermal

boundary layer and temperature decrease. It also reveals that the concentration

gradient at surface of the plate increases.

Impact of magnetic parameter (Q)

Figures 3.8 and 3.9 demonstrate the influence of the magnetic parameter on the

dimensionless profile of velocity distribution f ′(ξ) and dimensionless profile of tem-

perature distribution θ(ξ), respectively. From these figures, it is clear that with

increasing values of the magnetic parameter, profile of velocity decreases. It is also

observed that temperature distribution θ(ξ) shows increasing effects as the mag-

netic parameter increases. The reason beyond this electrically conducting fluid

produces a resistive force known as Lorentz force, which opposes the flow and has

a tendency to make the fluid motion slow down in the boundary layer and there-

fore reduces the profile of velocity whereas its temperature θ(ξ) increases with the

increase in magnetic parameter.
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Impact of thermophoresis parameter (Nt)

The impact of thermophoresis parameter on the dimensionless profile of tempera-

ture distribution θ(ξ) and dimensionless profile of concentration distribution φ(ξ)

are presented respectively in Figures 3.10 and 3.11. It is clear, from these figures

profile of temperature and their associative thickness of thermal bondary layer of

the thermal field increase with the increasing values of thermophoresis parameter.

It is also noticed that for varying values of Nt concentration profile φ(ξ) and re-

lated thickness of bondary layer increases.

Impact of permeability parameter (kp)

Figures 3.12 and 3.13 indicate the influence of the permeability parameter on the

dimensionless profile of velocity distribution f ′(ξ) and dimensionless profile of the

temperature produces a resistive force, that has a tendency to slow down the fluid

motion. It is observed that resistance increases in the fluid motion by increasing

values of the permeability parameter. Therefore, it is concluded that velocity pro-

file f ′(ξ) decreases and temperature profile θ(ξ) increases by increasing values of

permeability parameter.

Impact of non-Newtonian Williamson parameter (λ)

From Figures 3.14 and 3.15, we observe the effect of non-Newtonian Williamson

parameter on the velocity and temperature profiles respectively. It is observed

that the velocity profile and thickness of boundary layer decrease by increasing

values of λ. It is also observed that the profile of temperature and thickness of

thermal boundary layer decreases.

Impact of chemical reaction parameter (γ)

Figure 3.16 explains the influence of the chemical reaction parameter on the profile

of concentration. It is noted that increasing values of chemical reaction parameter
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concentration as well as the thickness of concentration decrease. It is because of

the fact that the chemical reaction in this system results in chemical dissipation

and therefore results in decrease in the profile of concentration. The most sig-

nificant influence is that chemical reaction tends to decrease the overshoot in the

concentration profiles and their associated boundary layer.

Impact of Prandtl number (Pr)

The impact of Pr on the profile of temperature field in the presence of melting

parameter is displayed in Figure 3.17. From figure, we deduce that by increasing

the values of Prandtl number, temperature profile increases. This is because the

larger values of Prandtl number possess smaller thermal diffusivity and smaller

Prandtl number have stronger thermal diffusivity. This change in thermal diffu-

sivity produces a reduction in the temperature and thickness of thermal boundary

layer.

Impact of Brownian motion parameter (Nb)

Figures 3.18 and 3.19 depict that by increasing Brownian motion parameter, tem-

perature profile and thickness of boundary layer increases slightly whereas con-

centration profile decreases significcantly.
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Figure 3.2: Impact of melting parameter on the velocity profile.
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Figure 3.3: Influence of melting parameter on the temperature field.
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Figure 3.4: Effect of radiation parameter on the dimensionless temperature.
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Figure 3.5: Effect of radiation parameter on the dimensionless concentration.
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Figure 3.6: Imapct of Lewis number on the dimensionless temperature.
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Figure 3.7: Imapct of Lewis number on the dimensionless concentration.
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Figure 3.8: Impact of magnetic parameter on the velocity field.
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Figure 3.9: influence of magnetic parameter on the temperature profile.
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Figure 3.10: Effect of thermophoresis parameter on the dimensionless tem-
perature.
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Figure 3.11: Effect of thermophoresis parameter on the dimensionless concen-
tration.
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Figure 3.12: Effect of permeability parameter on the dimensionless velocity.
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Figure 3.13: Effect of permeability parameter on the dimensionless tempera-
ture.
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Figure 3.14: Effect of Williamson parameter on the dimensionless velocity.
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Figure 3.15: Effect of Williamson parameter on the dimensionless tempera-
ture.
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Figure 3.16: Influence of chemical reaction parameter on the dimensionless
concentration.
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Figure 3.17: Influence of Pr on dimensionless temperature.
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Figure 3.18: Influence of Brownian motion on the dimensionless temperature.
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Figure 3.19: Impact of Brownian motion on the dimensionless concentration.



Chapter 4

Effect of Cattaneo-Christov heat

flux on MHD Williamson

nanofluid flow in a porous media

The main objective of this chapter is to extend the numerical investigation of

MHD boundary layer flow and melting heat transfer of two-dimensional steady

state flow of an incompressible Williamson nanofluid over a stretching surface

in a porous medium with the effect of Cattaneo-Christov heat flux model. The

inclusion of the physical effect in the energy equation make the problem more

realistic and applicable in the industry. The nonlinear partial differential equa-

tions (PDEs) are converted into a system of ODEs (nonlinear) by using a suitable

similarity transformations. The numerical solution of these modeled ordinary dif-

ferential equations (ODEs) are achieved by utilizing shooting technique together

with Runge-Kutta method of order four (RK-4). We also verify our results by

using the Matlab function bvp4c. Finally the results are discussed for different

parameters through graphs and tables.

43
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4.1 Problem formulation

Let us consider the numerical investigation of MHD boundary layer flow of an in-

compressible Williamson nanofluid. The flow is two-dimensional past a stretching

surface with porous medium. Schematic diagram of the system under investigation

(see Figure 3.1). The plate has been stretched with velocity u = ax, (a > 0) along

x-axis. In addition, fluid is flowing in the presence of magnetic field. The magnetic

field is supposed to be applied along the y-axis. The temperature at surface is Tw,

Uw, Cw represent fluid velocity, nanoparticle concentration at surface respectively.

Moreover, Tm denotes the melting surface temperature and T∞ denotes the free

stream temperature of the nanofluid. It is presumed that the free stream temper-

ature T∞ is greater than the melting surface temperature Tm. Here we can neglect

heat generation and viscous dissipation under the mentioned presumption.

The following system of equations are incorporated for mathematical model[27, 39].

Continuity equation:
∂u

∂x
+
∂v

∂y
= 0, (4.1)

Momentum equation:

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+
√

2νΓ
∂u

∂y

∂2u

∂y2
− σB

2
0

ρ
u− ν

k′
u, (4.2)

Energy equation:

u
∂T

∂x
+ v

∂T

∂y
+ λ1

 u∂u
∂x

∂T
∂x

+ v ∂v
∂y

∂T
∂y

+ u ∂v
∂x

∂T
∂y

+ v ∂u
∂y

∂T
∂x

+2uv ∂2T
∂x∂y

+ u2 ∂
2T
∂x2

+ v2 ∂
2T
∂y2

 (4.3)

= αm
∂2T

∂y2
+ τ

[
DB

∂T
∂y

∂C
∂y

+ DT

T∞

(
∂T
∂y

)2 ]
− 1

(ρc)f

∂qr
∂y

,

Concentration equation:

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+
DT

T∞

∂2T

∂y2
− k0C. (4.4)
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The associated boundary conditions for the modeled problem:

u = Uw(x) = ax, T = Tm, C = Cw, as y = 0,

u = 0, T → T∞, C → C∞, at y →∞,

k

(
∂T

∂y

)
y=0

= ρ[β + cs(Tm − T0)]v(x, 0),


(4.5)

Here u and v denote the velocity components in the x and y direction, respectively.

T denotes the temperature of the nanofluid, ρ denotes the nanofluid density, αm

the thermal diffusivity of the nanofluid, ν the kinematic viscosity, DB the Brow-

nian diffusion coefficient, DT the coefficient of thermophoresis diffusion, k′ the

porous medium permeability, (ρc)f the heat capacity of the fluid, and (ρc)p de-

notes the heat capacity of the nanoparticle. In the modeled problem Tm denotes

the melting surface temperature, T∞ represents the temperature in the free-stream

condition, and λ1 is the thermal relaxation time of heat flux.

In order to obtain the solution of the problem, first of all system of Eqs. (4.1)−(4.4)

together with the boundary conditions (4.5) is converted into the dimensionless

form by using suitable similarity transformation. The following similarity trans-

formation as defined in [27] has been used.

ξ =

√
a

ν
y, θ(ξ) =

T − Tm
T∞ − Tm

, φ(ξ) =
C − Cw
C∞ − Cw

, ψ = (aν)
1
2xf(ξ). (4.6)

The continuity Eq. (4.1) is identically satisfied for the stream function ψ = ψ(x, y).

The components of velocity are given by:

u =
∂ψ

∂y
, v = −∂ψ

∂x
.

Using the similarity transformation from Eq. (4.6) in momentum Eq. (4.2), energy

Eq. (4.1), and concentration Eq. (4.4) along the boundary conditions (4.5) we get
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the following system of ODEs:

f ′′′ + ff ′′ − (f ′)2 + λf ′′f ′′′ − (Q+ kp)f
′ = 0, (4.7)(

1 +
4

3
R− γ1Prf 2

)
θ′′ + Pr

(
fθ′ +Nbφ′θ′ +Nt(θ′)2 − γ1ff ′θ′

)
= 0, (4.8)

φ′′ + Lefφ′ +

(
Nt

Nb

)
θ′′ − Leγφ = 0. (4.9)

Here f , θ and φ are function of ξ and prime denotes derivative w.r.t ξ. The

transformed BCs in the modeled problem are:

f ′(0) = 1, P rf(0) +Mθ′(0) = 0, θ(0) = 0, φ(0) = 0,

f ′(ξ)→ 0, θ(ξ)→ 1, φ(ξ)→ 1, as ξ →∞.

 (4.10)

The associated parameters appearing in the modeled problem are:

Pr = ν
αm

= µCp

k
, R= 4σ∗T 3

∞
kk∗

, kp=
ν
k′a

, λ=γx
√

2a3

ν
, γ=k0U(C∞−Cw)

ν
,

Nt= τDT (T∞−Tm)
νT∞

, Q=
σB2

0

ρa
, Le= ν

DB
, and Nb= τDB(C∞−Cm)

ν
,

where Pr denotes the Prandtl number, R the radiation parameter, kp the per-

meability parameter, λ the non-Newtonian Williamson parameter, γ the chemical

reaction parameter, Nt the thermophoresis parameter, Q the magnetic parameter,

Nb the Brownian motion parameter, and Le the Lewis number.

The quantities of practical interest in this study are the Nusselt number (Nux),

the Sherwood number (Shx), and the skin friction coefficient (Cf ), respectively.

These are defined as:

Shx =
xqm

DB(C∞ − Cw)
, Nux =

xqw
k(T∞ − Tm)

and Cf =
τw
ρU2

w

,

where τw is the shear stress, qm the mass flux from the surface, and qw the heat

flux at the wall surface, given by:

qm = −DB
∂C

∂y
, qw = −k∂T

∂y
, τw = µ

(
∂u

∂y
+

Γ√
2

(
∂u

∂y

)2
)

at y = 0.
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Using the dimensionless variables, we get

Nux(Rex)
1
2 = −θ′(0), Cf (Rex)

1
2 = −f ′′(0) +

λ

2
f ′′(0)2 and Shx(Rex)

1
2 = −φ′(0),

where Rex represents the Reynolds number and is defined as:

Rex =
xUw(x)

v
.

4.2 Numerical solution

The analytical solution of the system of Eqs. (4.7)−(4.9) together with boundary

conditions (4.5) can not be found because they are coupled and nonlinear in nature.

These nonlinear coupled ODEs are solved numerically by the shooting technique.

To apply this technique, we first convert the system of ODEs of higher order into

the system of ODEs of first order. Eqs. (4.7)−(4.9) can be rewritten as,

f ′′′ =
1

1 + λf ′′
(
−ff ′′ + (f ′)2 + (Q+ kp)f

′) ,
θ′′ =

(
−Pr

1 + 4
3
R− γ1Prf 2

)
[fθ′ +Nbθ′φ′ +Ntθ′

2 − γ1ff ′θ′],

φ′′ = −Lefφ′ −
(
Nt

Nb

)
θ′′ + Leγφ.

the associated boundary conditions are:

f ′(0) = 1, P rf(0) +Mθ′(0) = 0, θ(0) = 0, φ(0) = 0,

f ′(ξ)→ 0, θ(ξ)→ 1, φ(ξ)→ 1, as ξ →∞.

By using the following notations,

f = y1, f ′ = y2, f ′′ = y3, θ = y4, θ
′ = y5, φ = y6, φ′ = y7,
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the system of first order ODEs are:

y′1 = y2,

y′2 = y3,

y′3 =
1

1 + λy3

(
−y1y3 + y22 + (Q+ kp)y2

)
,

y′4 = y5,

y′5 =
−Pr [y1y5 +Nby5y7 +Nty25 − γ1y1y2y5]

1 + 4
3
R− γ1Pry21

,

y′6 = y7,

y′7 = −Ley1y7 + Leγy6 −
Nt

Nb

(
3Pr

3 + 4R

)(
−y1y5 −Nb(y5y7)−Nt(y25)

)
,

subject to the following initial conditions:

y1(0) = η1,

y2(0) = 1,

y3(0) = η2,

y4(0) = 0,

y5(0) = −Prη1
M

,

y6(0) = 0,

y7(0) = η3.

To solve the above system of equations the unbounded domain [0, ξ∞] is restricted

to a bounded domain [0, ξe], where ξe= 5. This is due to the fact that increasing

the value of ξe beyond 5 gives negligible variation in the numerical result. In the

modeled problem, η1, η2, and η3 are initial guesses which are required to solve the

above first order system of ordinary differential equations with fourth order Runge-

Kutta method. Newton iterative scheme is used to refine those initial guesses. The

iterative process is repeated untill the following criteria is met.

max {|y2(ξ∞)− 0|, |y4(ξ∞)− 1|, |y6(ξ∞)− 1|} < ε,
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where ε = 10−5 is the tolerance for the modeled problem.

4.3 Results and discussion

The objective of this section is to analyze numerical results displayed in the tabular

and graphical form. The numerical influence of different parameters for example,

Prandtl number (Pr), dimensionless melting parameter (M), Brownian motion

parameter (Nb), thermophoresis parameter (Nt), radiation parameter (R), Lewis

number (Le), magnetic parameter (Q), permeability parameter (kp), and chemical

reaction parameter (γ), on the velocity, temperature, and concentration profiles

are displayed graphically. Numerical values of the local Nusselt number, and local

Sherwood number are presented in table.

Table 4.1 shows the effect of various parameters on local Nusselt number and local

Sherwood number are of great interest for engineers. In table 4.1 the numerical

analysis of different physical parameters such as permeability parameter, melting

parameter, Non-Newtonian Williamson parameter, chemical reaction parameter,

and Deborah number and their impacts on the local Nusselt number and local

Sherwood number. We compare the results obtained by the shooting method with

Matlab built-in function bvp4c and found both to be in excellent agreement. From

this table, we can see that by increasing the values of Permeability parameter, di-

mensionless melting parameter, non-Newtonian Williamson parameter, chemical

reaction parameter, and Deborah number Nusselt number and Sherwood number

both are decreased.
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−θ′(0) −φ′(0)
kp M λ γ γ1 bvp4c Shooting bvp4c Shooting
0 0.5 0.2 0.01 0.01 1.9617 l.9617 0.3498 0.3498
1 1.8626 1.8625 0.3117 0.3117
2 1.7960 1.7960 0.2829 0.2829

0.5 1.7960 1.7960 0.2829 0.2829
1 1.7813 1.7813 0.2488 0.248
2 1.7511 0.7511 0.2392 0.2392

0.01 1.7156 1.7156 0.2144 0.2144
0.1 1.6553 1.6553 0.2077 0.2077
0.2 1.6271 1.6271 0.1719 0.1719

0.05 1.6163 1.6163 0.1631 0.1631
0.1 1.6030 1.6030 0.1492 0.1492
0.2 1.5830 1.5830 0.1292 0.1292

0.02 1.5528 1.5528 0.0835 0.0835
0.03 1.4935 1.4935 0.0437 0.0437
0.04 1.4542 1.4542 0.0239 0.0239

Table 4.1: Numerical results of Sherwood number (−φ′(0)), and Nusselt num-
ber (−θ′(0)) for various parameters.

The numerical results are presented for the physical interpretation of various val-

ues of relevant parameters in Figures 4.1−4.9.

Impact of melting parameter (M)

The impact of non-dimensional melting parameter on velocity profile f ′(ξ) and

non-dimensional temperature profile θ(ξ) is shown in Figure 4.1 and 4.2 respec-

tively. The graphical demonstration shows that for the increasing values of non-

dimensional melting parameter, the velocity profile and thickness of the boundary

layer increases slightly and the temperature distribution decreases. It is found

that an increase in the non-dimensional melting parameter increases the melting

intensity, which acts as boundary condition at the stretching surface and has a

tendency to make the boundary layer thicker.
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Impact of radiation parameter (R)

The effect of radiation parameter on profile of temperature distribution is displayed

in Figure 4.3. From the figure it is observed that by increasing the radiation pa-

rameter, temperature profile decreases significantly. It is because of the fact that

the increasing values of the radiation parameter lead to decrease the thickness of

the boundary layer and enhance the heat transfer rate with chemical effect on the

melting surface. Figure 4.4 represents that increasing the radiation parameter,

enhances the concentration profile φ(ξ).

Impact of Prandtl number (Pr)

The influence of Pr on the profile of temperature field in the presence of melting

parameter is displayed in Figure 4.5. From figure, we deduce that by increasing

the values of Prandtl number, temperature profile increases. This is because the

larger values of Prandtl number possess smaller thermal diffusivity and smaller

Prandtl number have stronger thermal diffusivity. This change in thermal diffu-

sivity produces a reduction in the temperature and thickness of thermal boundary

layer.

Impact of Brownian motion parameter (Nb)

Figures 4.6 and 4.7 depict that by increasing Brownian motion parameter, tem-

perature profile and thickness of boundary layer increases slightly whereas con-

centration profile decreases significcantly.

Impact of permeability parameter (kp)

Figures 4.8 and 4.9 indicate the influence of the permeability parameter on the

non-dimensional profile of velocity distribution f ′(ξ) and non-dimensional profile

of the temperature produces a resistive force, that has a tendency to slow down

the fluid motion. It is observed that resistance increases in the fluid motion by



Effect of Cattaneo-Christov on MHD flow of Williamson nanofluid 52

increasing the values of the permeability parameter. Therefore, it is concluded

that the velocity profile f ′(ξ) decreases and temperature profile θ(ξ) increases by

increasing values of permeability parameter.
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Figure 4.1: Impact of melting parameter on the dimensionless velocity.
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Figure 4.2: Impact of melting parameter on the dimensionless temperature.
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Figure 4.3: Effect of radiation parameter on the dimensionless temperature.
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Figure 4.4: Effect of radiation parameter on the dimensionless concentration.
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Figure 4.6: Effect of Brownian motion parameter on θ(ξ).
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Figure 4.7: Behavior of Brownian motion parameter on the dimensionless
concentration.
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Figure 4.8: Effect of kp on the dimensionless velocity.
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Figure 4.9: Representation of temperature profile for various values of kp.



Chapter 5

Conclusion and outlook

In this dissertation, the analysis of MHD boundary layer flow and melting trans-

fer of heat of two-dimensional steady state flow of an incompressible Williamson

nanofluid on a stretching surface in a porous medium with the influence of mag-

netic field is investigated. Furthermore, the impact of heat flux model of Cattaneo-

Christov is under consideration. The solution of the problem is obtained by con-

verting governing PDEs into a system of ODEs utilizing similarity transformation

and then numerically solving by applying the shooting technique. The numerical

results are in good agreement with Matlab built-in function bvp4c solver. Physi-

cal significance of different parameters are discussed with respect to dimensionless

velocity, temperature and concentrations profiles. From the figures the following

conclusions have been drawn.

• Due to an increase in the magnetic parameter, the velocity profile increases

and the temperature profile decreases.

• Due to an increase in the radiation parameter, the temperature field de-

creases whereas the concentration profile increases.

• The temperature profile increases with the increase of Pr.

56
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• For increasing values of the magnetic parameter, the magnetic parameter

has decreasing effects on the velocity profile, and increasing effects on the

temperature θ.

• An increase in Brownian motion parameter, temperature profile increases,

while the concentration profile decreases in the horizontal direction.

• Velocity field f ′ decreases by enlarging permeability parameter kp.

• Temperature field θ decreases with an increase in permeability parameter kp.

• Temperature field θ decreases for increasing values of γ1.

• An increase in the values of non-Newtonian Williamson parameter causes

decrease in the velocity profile and similar effects on temperature.

• By increasing the thermophoresis parameter Nt, momentum boundary layer

thickness and concentration boundary layer thickness increases.

• For increasing values of non-Newtonian Williamson parameter, and melting

parameter, the skin friction coefficient decreases.

5.1 Future recommendations

In future, this problem may be extended in many directions considering the fol-

lowing ideas:

• The impact of Joule heating.

• The impact of different nanoparticles.

• The impact of source and sink.

• The impact of viscous dissipation.
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